
 Introduction to Event-

Driven Architecture
The essential concepts that every developer should know

Kacey Bui

Follow

Feb 10 · 11 min read

Our inaugural post on the Introduction to Microservices talked

about the granularity of services and the need to ensure loose

coupling. It was said that services should be autonomous, fully

own their dependencies, and minimise synchronous

communication. Today we are going to touch on what it means to

be loosely coupled, and explore one handy trick of the trade that

seems to be increasingly gaining traction in the microservices

community — Event-Driven Architecture.

A Simple Definition

Event-driven Architecture (EDA) is a software architecture

paradigm promoting the production and consumption of events.

An event represents an action of significant

interest. Often, events correspond to a creation or a change of

state of some entity. For example, raising an order in an e-

commerce application is an event. Dispatching a product as a

https://medium.com/@kacey-bui?source=post_page-----e94ef442d824--------------------------------
https://medium.com/microservicegeeks/introduction-to-event-driven-architecture-e94ef442d824?source=post_page-----e94ef442d824--------------------------------
https://medium.com/microservicegeeks/an-introduction-to-microservices-a3a7e2297ee0
https://medium.com/@kacey-bui?source=post_page-----e94ef442d824--------------------------------

result of an earlier order is also an event. A customer submitting a

review for a received product is — you guessed it — an event.

The Event That Never Happened

The peculiar thing about events is that they are not explicitly

communicated to specific parties that might care about them.

Events “just happen”. Crucially, they happen irrespective of

whether certain parties are interested in them. This might sound

like the oft-quoted philosophical thought experiment: “if a tree

falls in a forest and no one is around to hear it, does it make a

sound?”. But that is precisely what makes events so powerful —

the fact that an event translates to a self-contained

record of something occurring means that events and, by

extension, their emitters, are fundamentally decoupled from

their handlers. In fact, producers of event records often have no

knowledge of who the consumers might be, nor whether

consumers exist at all.

A record typically contains the information necessary to

describe an event. In our earlier example of an order, the

corresponding event might be described by a simple JSON

document that might look something like this:
{

 "orderId": "760b5301-295f-4fec-95f8-6b303a3b824a",

 "customerId": 28623823,

 "productId": 31334,

 "quantity": 1,

 "timestamp": "2021-02-09T11:12:17+0000"

}

Note: Despite their subtle differences, records and events are

often used interchangeably; i.e., the term “event” is used to

denote a “record” of that event. To make things easier, we’ll

permit ourselves the same liberty from here on in.

Admittedly, the example above is probably an oversimplified take

on an order, but it will suffice. The application raising the order

(say, the shopping cart service) has no idea who will process the

order, when, how or even why. A producer ensures that

everything that a prospective consumer needs to process

the event is captured. That said, the order record does not

strictly need to include every single attribute required for its

fulfilment. For example, the dimensions of the product, its

stocking location and the shipping address of the customer are not

directly specified but can be resolved by following the IDs

captured in the order record. The concept of foreign keys that you

may be familiar with from relational databases also applies to

events.

Channelling Events

If producers and consumers of events are unaware of each other,

how do they communicate?

The clue is in the term “record”. Events are usually persisted in a

well-known location, called a log. (Sometimes, the

term ledger may be used.) Logs are low-level, append-only data

structures that allow an event to be saved by producers in a

location where other parties (called consumers) can later access

it. All manipulations of the log are facilitated by brokers —

persistent middleware that resides between producers and

consumers. Once an event has been published, anyone and

everyone can consume that event.

When dealing with event-driven systems, we often use the

term stream to describe an interface to one or more logs. While a

log is a physical concept (implemented using files), a stream is a

logical construct that represents events as an unbounded sequence

of records, subject to certain ordering constraints. Different event

streaming platforms might use proprietary names to refer to

streams. Apache Kafka — by far the most popular event streaming

platform in existence — describes streams in terms

of topics and partitions.

The relationship between producers, consumers and streams is

depicted in the following reference model.

Event-Driven Architecture Reference Model

A quick checkpoint to help cement our understanding:

https://medium.com/swlh/apache-kafka-in-a-nutshell-5782b01d9ffb

• Events are actions of interest that occur at

discrete points in time and may be externally

observed and described.

• Events are persisted as records. Events and

records, despite being related, are technically

different things. An event is an occurrence of

something (e.g., a state change), and is intangible

on its own. A record is an accurate description of

that event. We often use the term event to refer to

its record.

• Producers are receptors that detect events

by publishing corresponding records to a

stream.

• Streams are persistent sequences of

records. They are typically backed by one or more

disk-based logs under the hood. Equally, streams

might be backed by database tables, a distributed

consensus protocol, or even a blockchain-style

decentralised ledger.

• Brokers govern access to streams, facilitate

the reading and writing operations, handle

consumer state and perform various housekeeping

tasks on the streams. For example, a broker might

truncate the contents of a stream when it overflows

with records.

• Consumers read from streams and react to

the receipt of records. A reaction to an event

might entail some side-effect; for example, a

consumer might persist an entry into its local

database — reconstructing the state of a remote

entity from its published “update” events.

• Consumers and producers may overlap; for

example, where the reaction to an event might be

the production of one or more derived events.

Decoupling Through Asynchrony & Generality

Circling back to where we started, why does EDA lead to a

significantly reduced level of coupling?

One pragmatic definition of coupling is the degree to which a

component is impacted by others. Coupling exists in

both space — whereby components are structurally related, and

in time — where the notion of time affects the extent of their

relationship. A good example of the latter is where one service

synchronously invokes another’s REST API. If the called service is

down, the callee usually cannot proceed — it is blocked on the

response. If both services must be operational at the same time,

then there is a degree of temporal coupling between them. We say

that components are tightly coupled if there is a strong

interdependency between them, and loosely coupled otherwise.

Conceptual model of coupling

EDA takes a two-pronged approach to curb coupling.

1. Recall, events are not communicated, they just

occur. The component raising an event (by

publishing a record) has no awareness of other

components that may or may not exist. Therefore,

the producer will not cease working if the

consumers are unavailable — provided that the

broker can durably buffer the events without

imposing back-pressure upon the producer.

2. The persistence of event records on the broker

largely eliminates the notion of time. A producer

may publish an event at time T1, while a consumer

may read it at T2, with T1 and T2 potentially being

separated by milliseconds (if all is well) or hours (if

some consumers are down or struggling).

EDA is not a silver bullet. It does not eliminate the notion of

coupling altogether — otherwise, components in the system would

no longer function collectively. Our attention now turns to the

broker: for producers and consumers to be meaningfully

decoupled, they must instead rely on (and therefore couple

themselves to) a broker. This adds complexity to the architecture

of a system and introduces another point of failure. This is

why brokers must be highly performant and fault-

tolerant, otherwise we’ve just traded one set of problems for

another.

Styles of Event Processing

Event processing is generally categorized into three nominal

styles. These styles are not mutually exclusive, often appearing

together in large, event-driven systems.

Discrete event processing

The processing of discrete events; for example, the publishing of a

post in a social media platform. Discrete event processing is

characterized by the presence of events that are generally

unrelated to one another and may be handled independently.

Event stream processing

The processing of an unbounded stream of related events, where

event records appear in some order and are processed with some

knowledge of past events. A good example might be the

syndication of changes to a business entity. A consumer may apply

these changes in a producer-prescribed order, to save a copy of the

entity in its local database. Processing these change records

discretely might not cut it, as order matters. Consumers also need

to avoid race conditions, whereby multiple consumer instances

might attempt to concurrently apply changes to the same record in

a database, resulting in data inconsistencies due to out-of-order

updates.

Popular event streaming platforms like Kafka rely on record

keying and partitions to preserve the order of updates. Kafka also

guarantees that all changes to an entity are processed by one

consumer instance, avoiding concurrency races that would result if

multiple consumers were to naively process events in parallel.

Complex event processing

Complex event processing (CEP) derives or identifies complex

event patterns from a series of simple events. An example of CEP

might be monitoring a group of temperature and smoke sensors in

a building to infer that a fire has broken out and to track its

progress. Individual temperature changes might not be sufficient

to raise an alert; however, the clustering of temperature spikes and

the rate of change may provide more meaningful insights that

could ultimately save lives.

This sort of processing is usually more involved, requiring the

event processor to keep track of prior events and provide an

efficient way of querying and aggregating them.

When to use EDA

There are several use cases that play to the strength of event-

driven architecture:

1. Opaque consumer ecosystem. Cases where

producers are generally unaware of consumers.

The latter might even be ephemeral processes that

could come and go with short notice!

2. High fan-out. Scenarios where one event might

be processed by multiple, diverse consumers.

3. Complex pattern matching. Where events

might be strung together to infer more complex

events.

4. Command-query responsibility segregation.

CQRS is a pattern that separates read and update

operations for a data store. Implementing CQRS

can improve the scalability and resilience of

applications, with some consistency trade-offs.

This pattern is commonly associated with EDA.

Benefits of EDA

1. Buffering and fault-tolerance. Events might

be consumed at a different rate to their production

and producers mustn’t slow down for the

consumers to catch up.

2. Decoupling of producers and consumers,

avoiding unwieldy point-to-point integrations. It’s

easy to add new producers and consumers to the

system. It’s also easy to change the

implementations of producers and consumers,

provided that the contracts/schemas constraining

the event records are honoured.

3. Massive scalability. It is often possible to

partition event streams into unrelated substreams

and process these in parallel. We can also scale the

number of consumers to meet the load demands if

the backlog of events grows. Platforms like Kafka

enable the processing of events in strict order while

https://codeburst.io/combining-strict-order-with-massive-parallelism-using-kafka-83dc1ec9be03

simultaneously allowing massive parallelism across

the stream.

Drawbacks of EDA

1. Limited to asynchronous processing. While

EDA is a powerful pattern for decoupling systems,

its application is limited to the asynchronous

processing of events. EDA does not work well as a

substitute for request-response interactions, where

the initiator must wait for a response before

continuing.

2. Introduces additional complexity. Where

traditional client-server and request-response style

of computing involves just two parties, the

adoption of EDA requires a third — a broker to

mediate the interactions between producers and

consumers.

3. Failure masking. This is a peculiar one as it

seems to run contrary to the grain of decoupling

systems. When systems are tightly coupled, an

error in one system tends to propagate quickly and

is brought to the forefront of our attention, often in

painful ways. In most cases, this is something we

would like to avoid: the failure of one component

should have as little effect as possible on the others.

https://codeburst.io/combining-strict-order-with-massive-parallelism-using-kafka-83dc1ec9be03

The flip side of failure masking is that it

inadvertently conceals problems that should

otherwise be brought to our attention. This is

solved by adding real-time monitoring and logging

to each event-driven component, but this comes

with added complexity.

Benefits and drawbacks of event-driven architecture

Things to watch out for

EDA is not a panacea, and like any powerful tool, it is prone to

misuse. The following list should not be read as the outright

disadvantages of EDA, but more as a set of gotchas that prudent

developers and architects should be aware of when designing and

implementing event-driven systems.

1. Convoluted choreography. With loosely

coupled components, one can get into a situation

where the architecture might resemble a Rube

Goldburg machine, whereby the entire business

logic is implemented as a series of side-effects that

are disguised as events: one component might raise

an event that triggers a response in another

component that raises another event, triggers

another component, and so forth. This style of

interaction between components can quickly

become difficult to understand and reason about.

2. Disguising commands as events. An event is a

pure depiction of something that has happened; it

does not prescribe how the event should be

handled. On the other hand, a command is a

direct instruction addressed to a specific

component. Because both commands and events

are messages of sorts, it is easy to get carried away

and misrepresent a command as an event.

3. Remaining agnostic of consumers. Events

should capture relevant attributes in a way that

does not limit how those events may be processed.

This is easier said than done. Sometimes we might

be privy to more information that could, in theory,

be added to an event record, but it’s not clear

whether adding that information to the record is

useful or if it just leads to useless bloat.

Conclusion

The microservices architectural paradigm is one piece of the

broader puzzle of building more maintainable, scalable and robust

software systems. Microservices are terrific from a problem

decomposition standpoint, but they leave a lot of prickly problems

on the table; one such problem being coupling. A monolith

haphazardly decomposed into a handful of microservices could

actually leave you in a worse state compared to where you started.

We even have a term for that: a “distributed monolith”.

To help complete the puzzle and address the issue of coupling, we

looked into Event-Driven Architecture.

EDA is an effective tool for reducing coupling between the

components of a system by modelling interactions using the

concepts of producers, consumers, events and streams. An event

represents an action of interest and may be published and

consumed asynchronously by components who are not even aware

of each other’s existence. EDA allows for components to operate

and evolve independently. It is not a silver bullet to slay all

demons, but where EDA is an appropriate choice, the benefits it

brings significantly outweigh the cost of its adoption. It may be

argued that EDA is an essential element of any successful

microservices deployment.

